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Abstract—Traditional IoT sensor nodes transmit raw data
to centralized servers for analysis and storage. At higher data
rates this architecture is no longer feasible. Instead data must
be processed at the lowest level possible to include the sensor
node itself. The Joule framework enables decentralized data
processing by distributing computation into modules which are
dynamically linked at run time by a process supervisor. Modules
may be collocated on a single machine or distributed across a
network. Data is stored where it is processed creating a fully
decentralized architecture. Processed data can be queried by
centralized servers or delivered directly to the end user. This
allows high bandwidth sensors to be incorporated seamlessly into
existing IoT deployments without depleting network bandwidth
or server resources. This paper presents the Joule framework as
well as performance benchmarks and deployment case studies.

I. INTRODUCTION

Traditional Internet of Things (IoT) frameworks require
sensors to transmit raw data to a central server for analysis
and storage. High bandwidth sensors with unreliable network
connectivity are difficult to integrate into these frameworks.
There is a pressing need to shift computation away from
the data center and out to the network edge. Single board
computers (SBC’s) such as the Raspberry Pi offer an ideal
platform for edge computing. The SBC market evolved primar-
ily from the abundance of high performance low energy chip
sets designed for mobile phones. These platforms have robust
hardware support for multi-threading, floating point, and net-
work connectivity that are not present in microcontrollers, yet
they consume single digit watts making it possible to deploy
them in embedded environments where desktop and server
processors cannot operate due to power and heat dissipation
requirements.

Decentralization reduces the server load and the burden
on communication networks, but places significant demands
on the client. In order to process and store data locally,
each client requires an assortment of low level hardware
drivers and data management routines as well as high level
signal processing and machine learning algorithms. These are
generally implemented as proprietary software stacks that vary
from platform to platform. Maintaining such a complex code
base for a wide variety of clients is expensive and error-prone.

Joule provides a common framework for implementing
decentralized data processing eliminating the need for costly
customized software stacks. It is optimized for SBC’s but can

run on any Linux platform. Joule distributes computation into
independent executable modules. Modules are loosely coupled
by streams and can be updated or replaced independently.
This provides flexibility to meet rapidly changing requirements
common in IoT environments. With Joule, high bandwidth
sensors can operate autonomously or coexist with centralized
infrastructure by transmitting fully processed lower bandwidth
data to upstream servers.

A. Real Time Processing Frameworks

The large influx of data both from physical sensors as well
as software analytics has driven the development of a variety
of real time processing frameworks. Apache Storm [1] is a
general purpose stream processor that enjoys wide industry
adoption. Recent work by [2], [3] improves cluster flexibility
with dynamic scheduling and resource balancing. Apache
Kafka [4] is a similar framework that provides real time
messaging and is often used in conjunction with Storm [5].
Several other architectures have been developed for particular
use cases such as [6] for cyclic streams and [7] for elastic
computation. These frameworks assume data is processed by
well connected servers. That is, the data is still centralized.
Joule executes directly on the client node providing completely
decentralized operation without any dependence on a network
connection. Furthermore Joule, unlike the general purpose
Kafka and Storm frameworks, is designed specifically for con-
tinuous time series. This simplifies the software abstractions
and reduces system overhead which is critical in a resource
constrained embedded environment.

B. Design Goals

Joule is designed to meet three primary objectives: speed,
flexibility, and security. First and foremost Joule provides an
efficient architecture to handle the acquisition and processing
of high bandwidth data. Speed by itself is not difficult to
achieve, but maintaining flexibility at the same time is a
challenging problem. Embedded IoT platforms usually run
monolithic binaries or a thin real time operating system
(RTOS). These architectures provide full access to the hard-
ware and therefore run at optimal speeds, but this is at the
cost of flexibility as updates generally require a firmware
flash. Monolithic binaries are also difficult to maintain because
dependencies are not well defined. A seemingly insignificant
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Fig. 1. Joule is a modular processing framework. Streams are strongly typed
data flows that connect modules. Streams can connect modules within a single
Linux process, between processes, or over a network connection

change can have ripple affects across the code base, some of
which may not be detected until the code has been deployed.

Joule uses composable modules that provide flexibility
while still maintaining a high throughput computational archi-
tecture. Modules are connected by strongly typed data flows
called streams as shown in Fig. 1. Modules do not need any
knowledge of where or how their inputs are produced and
do not need any knowledge of where or how their outputs
are consumed. This makes modules easier to develop than
monolithic binaries because programmers can work on code
isolated to their domain of expertise. They are easier to
test because their inputs and outputs (dependencies) are well
defined, and they are easier to maintain because modules can
be upgraded and replaced independently.

The final design goal of Joule is security. The system should
be resilient both to malicious actors as well as unintentional
errors in user code. In this sense, security is agnostic to
intent. If a poorly written routine consumes excessive proces-
sor resources it becomes an (unintentional) denial of service
attack. Joule protects the system from malfunctioning modules
by running each module as a separate process. The Linux
kernel provides robust tools to manage process security and
isolation. Using cgroups, the kernel can restrict the CPU and
memory usage of a process to predefined limits or isolate a
process in a virtual root (chroot) environment with limited or
no access to the underlying file system [8]. Joule monitors
process execution, automatically restarting any modules that
fail. As the module restarts, Joule buffers incoming data until
the process is ready to receive it, and any subscribers to the
module outputs continue operating without interruption.

The layout of the paper is as follows: Section II presents
the Joule framework and theory of operation. Section III
introduces an application programming interface (API) for
designing Joule modules. Section IV provides benchmarks on
common IoT platforms. Finally, Section V presents case study
results.

II. FRAMEWORK IMPLEMENTATION

The Joule Framework consists of a process supervisor,
jouled, and one or more modules which perform the data

processing. Modules are connected by strongly typed times-
tamped data flows called streams. Modules may have multiple
inputs and outputs and streams may branch to connect multiple
modules. This enables complex pipeline designs that span
multiple processes and machines.

A. Modules

Modules are configured using text files. The file is divided
into [sections] of key=value attributes. An example
module configuration is shown in Listing 1.

[Main]
#required
name = RMS Filter
exec_cmd = /path/to/executable --args
#optional
description = Compute 2-D RMS

[Inputs]
x = /surface/accel/x
y = /surface/accel/y
# additional inputs...

[Outputs]
rms = /surface/accel/rms
# additional outputs...

Listing 1. Example module configuration file

The [Main] section contains general attributes. The name
must be unique and is used to identify modules in the Joule
command line interface (CLI). The exec cmd is the absolute
path to the executable with any necessary command line
arguments. Modules may be any executable script or compiled
binary. The [Inputs] and [Outputs] sections contain stream
attributes. In this example the /surface/accel/x stream
is connected to the module’s x input. Outputs are data sources
and inputs are data sinks. A stream must have a single source
and may have multiple sinks. This requirement means output
bindings are unique while input bindings may be shared by
multiple modules.

B. Streams

Streams are timestamped data arrays. Timestamps are
in UNIX Time (microseconds since January 1 1970). Mi-
crosecond resolution supports sensors with bandwidths up to
500KHz. The data values are strongly typed which enables
efficient binary transmission between modules. Like modules,
streams are configured with text files. An example configura-
tion is shown in Listing 2.

The [Main] section contains general attributes. The path
attribute is a unique identifier which provides a logical hi-
erarchy for grouping streams into folders. This is strictly a
logical representation and does not affect how streams are
processed or persisted to disk. The data type is the binary
data representation and bit width of the elements. All elements
share the same type. Types may be float, int, or uint of
1, 2, 4, or 8 bytes. Streams are referred to by their composite
type which is the concatenation of the element type and the
element count. The stream in Listing 2 has two four byte (32
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Fig. 2. The Joule Framework. The modular data processing pipeline is controlled by jouled. Modules are connected by data streams. Streams use a variety
of transport mechanisms including intra-process queues, OS pipes, and network sockets. Persisted streams are stored in a local time series database and
runtime metadata including module logs is cached in a relational database (SQLite). The Client API provides a common abstraction for data streams called
Joule Pipes, as well as three fundamental module types: ReaderModule, FilterModule, and CompositeModule.

bit) floats so it has a composite type of float32_2. The
stream in Fig. 1 has four eight bit unsigned integer elements
so the composite type is uint8_4. The timestamp is always
an int64 regardless of the element type. Storing time in a
fixed width type avoids floating point precision errors.

[Main]
path = /surface/accel/rms
datatype = float32
keep = 1w
decimate = True

[Element1]
name = magnitude
plottable = yes
offset = 0.0
scale_factor = 1.0

[Element2]
name = angle
plottable = yes
offset = 0.0
scale_factor = 57.3 #convert to degrees

Listing 2. Example stream configuration file

The keep attribute is a time duration in units of years (y),
months (m), weeks (w) or days (d) that indicates how long
data is stored. A keep value of false means that the stream
is ephemeral and will not be persisted to disk. During module
development it is helpful to store some amount of data for all
streams, while in production reducing the number of persisted
streams improves speed and reduces disk usage. The decimate
attribute is a boolean value which indicates whether a persisted
stream should be stored as a decimated hierarchy. Decimated
streams can be quickly visualized at arbitrary time scales as
described in [9]. Decimation roughly doubles the amount of
storage required for a stream.

The [ElementX] sections describe the data values. Each
element must have a unique name. The additional attributes
provide optional metadata useful for visualization frameworks
such as the interface described in [10].

C. Supvervisor Process (jouled)

The framework is managed by the jouled daemon. This
runs as a service and is started during the system boot process.
It spawns modules, tracks their state, and restarts any ones
that fail. Additionally, it routes data between modules, stores
persisted data to a time series database described in [9],
and records module meta data including CPU consumption,
memory usage, and logs to a relational database that can be
queried by the Joule CLI.

The process is fundamentally input/output (I/O) bound by
the module data rates. This must be the case because if
jouled was computationally bound there would be no CPU
time available to the modules. In an I/O bound process
there is some blocking request to read or write data that
stalls execution. In jouled blocking I/O occurs in module
data routing, network access, and disk access. These actions
must be handled concurrently so it is not practical to pause
execution waiting for an I/O request to complete.

Instead, jouled uses an asynchronous execution model.
Asynchronous programs use coroutines that emulate concur-
rent execution in a single thread. Figure 3 shows how an
asynchronous program and a multi-threaded program execute
an identical computational task. When a coroutine is executing
it is the only code running which eliminates the need for
thread safe data structures and mutexes. When a coroutine
executes an I/O request it yields execution back to the event
loop which schedules the next available coroutine. The blocked
coroutine is marked as available when its I/O request has
completed. Coroutines may also explicitly yield execution to
another coroutine or simply request to be rescheduled after a
set time (ie sleep). In addition to elegantly handling blocking
I/O and simplifying data management, coroutines are more
efficient at context switching than threads. Threads are only
advantageous for computationally bound programs when the
hardware can support their simultaneous execution.

The supervisor begins by parsing the configuration files
described in Sections II-A and II-B to construct an implicit



U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815432, IEEE Internet of
Things Journal

Fig. 3. Multi-threading (left) vs asynchronous programming (right) for an I/O
bound process. Colors represent threads (left) and coroutines (right). Hashed
colors indicate execution stalls for blocking I/O, and white space indicates
context switching overhead. The asynchronous implementation consumes half
as many CPU resources to execute the same programming task.

directed acyclic graph (DAG) of module and stream depen-
dencies. The boot-up sequence is shown in Listing 3. The
supervisor starts modules with empty inputs first then itera-
tively starts any module with input streams that are produced
by currently executing modules. If the supervisor iterates
through the module list and is unable to start any module
it terminates the boot-up sequence. Modules cannot be started
either because they form a cyclic dependency graph or because
there is no module producing their inputs.

1 streams = read_stream_configs
2 modules = read_module_configs
3

4 #iteratively start valid modules
5 worked_paths = []
6 while(state_changed):
7 state_changed = false
8 for module in modules:
9 if(module.inputs not in streams or

10 module.outputs not in streams):
11 continue #skip invalid module
12

13 if module.outputs exist in worked_paths
14 execute(module)
15 worked_paths.append(module.outputs)
16 state_changed = true

Listing 3. Pseudocode for the supervisor boot-up sequence

D. Local Modules

Figure 2 illustrates how jouled manages the module pro-
cessing pipeline. For locally executing modules, jouled injects
streams through inter-process communication (IPC) pipes. A
separate pipe is used for each input and output stream. Prior to
calling fork/exec to spawn the module, the supervisor-facing
pipe ends are marked FD_CLOEXEC which means they are
closed after the exec and not available to the module process.
This ensures modules respect the one way flow of data from

inputs to outputs. IPC pipes are also used to redirect the
module’s stdout and stderr to a supervisor coroutine
which persists their output to a relational database. This
database can be queried with the command line interface to
track module execution and debug problems in the processing
pipeline.

The reassignment of stdout, and stderr is transparent
to the module, but the additional file descriptors used for
stream connections are explicitly communicated to the module
via command line arguments. This is done by appending
a JavaScript Object Notation (JSON) encoded dictionary of
(name, descriptor) pairs to the module’s exec_cmd. For
example the module configured in Section II-A would have
two read file descriptors and one write file descriptor and
would be executed with the additional argument string:

--joule_pipes = "{
inputs: { x: 5, y: 7 },
outputs: {rms: 8}

}"

The particular values of these descriptors is arbitrary and
depends on the order in which the modules are spawned by
the supervisor.

E. Remote Modules

Remote modules connect to jouled through network sockets.
A server coroutine provides a JSON application programming
interface (API) with end points for connecting remote inputs to
local streams and connecting remote outputs to the local time
series database. Clients request stream inputs by subscribing to
the stream path. The stream must be produced by a currently
executing module. Once subscribed, jouled spawns a coroutine
to transmit stream data over the socket as it is produced
by the local module. To inject a remote stream into the
local time series database, the client provides the full stream
configuration as a JSON object. jouled first verifies this stream
is not currently being produced by a local module. It then
checks if this path exists in the local database, if it does the
existing stream data type must match the requested data type.
Once these checks are completed jouled spawns a coroutine
to receive stream data over the socket which it then stores in
the local database.

III. CLIENT API

The Client Application Programming Interface (API) sim-
plifies module development by providing a high level interface
to data streams as well as base classes for common module
types. Modules are strictly I/O bound. This must be the
case because a computationally bound module cannot support
continuous streaming data. Therefore, like jouled, modules
work well with an asynchronous programming model. Streams
are the core I/O component. These are provided to a module
over various transport protocols. The Client API provides a
common asynchronous abstraction for managing data streams
called Joule Pipes.
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Fig. 4. Joule Pipes provided a high level interface to streams that is
independent of the underlying transport protocol. Modules read and write
to Joule Pipes using asynchronous coroutines. Explicitly separating the read
and consume actions simplifies common streaming algorithms.

A. Joule Pipes

Joule Pipes provide a protocol independent interface to data
streams. This decouples module design from pipeline imple-
mentation. The same module can run as a remote instance,
local process, or composite coroutine without modification.
Joule Pipes use a pair of queues to buffer incoming and
outgoing data. The queues align data assembled from binary
transport protocols into structured Numpy arrays [11]. Figure 4
illustrates how Joule Pipes move stream data between modules.

Output pipes have a single method, write, which transmits
data through jouled to any modules that request the stream
as an input. The data timestamps must be monotonically
increasing and not overlap with any data already sent to jouled
or present in the database. Input pipes have two methods:
read and consume. read returns the current contents of
the pipe buffer. The data remains in the buffer until explicitly
removed by consume. This allows modules to manage how
data is chunked, simplifying streaming algorithms that require
a region of samples to compute an output value.

Joule Pipes decouple the transport transmission rates from
the module’s processing rate. When designing modules care
must be taken to ensure that the code executes fast enough to
handle streaming data. If a module’s memory usage increases
over time this indicates the module cannot keep up with its
inputs and the Joule Pipe buffers are accumulating data.

B. Reader Modules

The Client API provides base classes for common mod-
ule configurations. The ReaderModule class is designed for
modules that read sensor data into the Joule Framework. An
example implementation is shown in Listing 4.

Readers have no inputs and a single output as shown in
Fig. 2. The start method creates a Joule Pipe for the output
stream and then invokes the run coroutine which must be
implemented by the child. This coroutine has two parameters,
the command line arguments (parsed args) and the output
stream (output). Command line arguments are configured by
implementing the custom_args method which provides a
copy of the module’s ArgumentParser instance. run should
execute indefinitely. At a minimum it yields execution back
to the event loop when writing to the output stream. Data is
retrieved from a sensor (details not shown) and timestamped

using the time_now utility function. The Joule Pipe write
method requires a 2D array of timestamped data. For low
bandwidth streams such as this example, samples may be
inserted individually by promoting a single row to a 2D matrix.
Higher bandwidth streams should use interpolated timestamps
rather than repeated calls to time_now and batch writes with
multiple rows of data.

1 from joule import ReaderModule, time_now
2 import numpy as np
3

4 class SensorReader(ReaderModule):
5

6 async def run(self, parsed_args,
7 output):
8 while(1):
9 value = #read from sensor

10 data = [time_now(), value]
11 #output timestamped data
12 await output.write(np.array([data]))
13

14 if __name__ == "__main__":
15 r = SensorReader()
16 r.start()

Listing 4. A Joule Reader Module

ReaderModules are designed to be invoked by jouled, but
they can also run as a standalone processes. A ReaderModule
determines its execution environment by the presence of the
--joule_pipes argument (see Section II-D). If this argu-
ment is missing, the module converts to standalone operation
and connects the JoulePipe output to stdout redirecting the
stream to the terminal. Standalone execution simplifies unit
testing and allows ReaderModules to easily integrate with
other streaming frameworks.

C. Filter Modules

The FilterModule class is designed for modules that process
input streams into new outputs. The module shown Listing 5
is a streaming implementation of the median filter routine
provided by the SciPy signal package [12].

The start method creates a JoulePipe for each input
and output stream and then invokes the run coroutine which
must be implemented by the child. run receives the parsed
command line arguments and a dictionary of inputs and
outputs indexed by the stream name specified in the module
configuration file (see Section II-A). Like the ReaderModule,
command line arguments may be configured by implementing
the custom_args method.

Lines 12 and 13 retrieve the Joule Pipes for the streams
associated with this module. More complex filters may have
multiple inputs or outputs. The filter begins by reading data
from the input stream into a structured Numpy array divided
into timestamps and data. The data is filtered in place using
the Scipy medfilt function. Filtering algorithms such as median
require data before and after a sample to compute the output.
In a streaming environment data is processed in blocks. Failing
to account for this discretization produces artifacts at block
boundaries where there is insufficient data to compute the
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output. In this median filter the first and last EDGE samples
of the block are invalid so they are omitted from the output
in Line 21. The call to consume on Line 23 leaves the last
2 × EDGE samples in the pipe buffer to compensate for the
invalid data regions. This execution sequence produces exactly
the same result as a median filter run over the entire dataset
at once.

1 from joule import FilterModule
2 from scipy.signal import medfilt
3

4 WINDOW = 21
5 EDGE = (WINDOW-1)/2
6

7 class MedianFilter(FilterModule):
8

9 async def run(self, parsed_args,
10 inputs, outputs):
11 #retrieve joule pipes
12 input = inputs["raw"]
13 output = outputs["filtered"]
14 while(1):
15 #read new data
16 vals= await input.read()
17 #execute median filter in place
18 data = vals["data"]
19 data = np.medfilt(data,WINDOW)
20 #write out valid samples
21 await output.write(vals[EDGE:-EDGE,:])
22 #prepend trailing samples to next read
23 input.consume(len(vals)-2*EDGE)
24

25

26 if __name__ == "__main__":
27 r = MedianFilter()
28 r.start()

Listing 5. A Joule Filter Module

FilterModules are designed to be invoked by jouled but
they can also run as standalone processes as shown in Fig. 2.
A FilterModule determines its execution environment by the
presence of the --joule_pipes argument. When executing
as a standalone process the module and stream configuration
files must be passed as additional command line arguments.
The FilterModule uses these configuration files to request the
appropriate network streams from the local jouled daemon. For
live execution, all source streams must be currently produced
by other modules. The FilterModule also supports historic
execution which is useful during module development. In
historic execution the FilterModule requests a specific interval
of data rather than a live stream. Jouled provides historic
data by connecting the module’s input streams directly to
the time series database instead of the output from another
module. Historic execution is triggered by specifying starting
and ending timestamps as additional command line arguments
when running the module as a standalone process.

D. Composite Modules

Composite modules combine multiple modules into a single
process as shown in Fig. 2. This improves data throughput
by eliminating the overhead of process context switching and

IPC. The module in Listing 6 combines the SensorReader and
MedianFilter described previously.

1 from joule import CompositeModule,
2 LocalPipe
3 from . import SensorReader, MedianFilter
4

5 class MedianSensor(CompositeModule):
6

7 async def setup(self, parsed_args,
8 inputs, outputs):
9 #create child modules

10 reader = SensorReader()
11 filter = MedianFilter()
12 pipe = LocalPipe()
13 #connect interior streams
14 task1 = reader.run(parsed_args, pipe)
15 task2 = filter.run(parsed_args,
16 {"raw": pipe},
17 outputs)
18 #schedule modules for execution
19 return [task1, task2]
20

21 if __name__ == "__main__":
22 r = MedianSensor()
23 r.start()

Listing 6. A Joule Composite Module

The setup coroutine receives the parsed command
line arguments and a dictionary of Joule Pipes associ-
ated with the module. These are the same parameters as
FilterModule::run discussed in the previous section.
Command line arguments can be configured by overriding
the custom_args function. The nested modules are initial-
ized and connected by a LocalPipe. LocalPipes are a Joule
Pipe subclass that provide intra-process stream connections.
LocalPipes also provide synchronous read and write methods
that simplify unit testing. Calling run for each module returns
a coroutine object. These are collected and returned for
execution in the main event loop.

IV. FRAMEWORK PERFORMANCE

The Joule Framework is designed for multicore single board
computers (SBC’s) but it can be installed on any Linux
distribution with systemd and Python3 (3.5 or higher). This
section presents benchmark results from five platforms that
illustrate the framework performance in a variety of hardware
environments. The benchmarked systems are shown in Table I.

These platforms cover three distinct hardware environments.
The BeagleBone and RaspberryPi are low cost, low power
SBC’s. The Intel NUC offers significantly more computational
power with a slightly larger footprint and higher cost. Amazon
Web Services (AWS) instances can be used for module devel-
opment and anchor distributed Joule pipelines into traditional
IoT infrastructure.

These benchmarks measure the processing requirements of
jouled. This represents the overhead of the Joule framework
over a monolithic binary implementation of a similar signal
processing pipeline. jouled is a single threaded process which
means it can only use one core. This is intentional as it
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Fig. 5. Jouled is a single threaded application. This plot shows the workload
for the core running jouled as a function of module data rate.

TABLE I
BENCHMARK HARDWARE PLATFORMS

Platform CPU Cores Speed RAM
BeagleBone Cortex A8 1 1 GHz 0.5 GB
RaspberryPi 2 Cortex A7 4 0.9 GHz 1 GB
RaspberryPi 3 Cortex A53 4 1.2 GHz 1 GB
Intel NUC Core i5 4 2.9 GHz 16 GB
AWS t2.nano Xeon E5 1 2.4 GHz 0.5 GB

maximizes the amount of computational resources available
for module execution. Figure 5 plots core utilization as a func-
tion of module data rate. In this benchmark, a ReaderModule
produces a six element floating point (float32_6) stream
that is decimated and stored locally.

The load percentages in Fig. 5 are only for a single core.
Figure 6 plots the same data against the total CPU capacity.
This is a more accurate representation of system load. The
BeagleBone has a single core CPU so the core load in Fig. 5
is equivalent to the system load. The absence of multiple
cores significantly decreases the BeagleBone’s performance
for this application. The RaspberryPi is available in a similar
form factor at the same price so there is little reason to use
the BagleBone as a Joule node. For this reason it is omitted
from this and subsequent benchmark figures. For the other
platforms, total overhead is less than 5% for all measured data
rates.

As the number of modules increases there is a linear
increase in CPU usage. Figure 7 plots jouled performance as a
function of pipeline depth. In this benchmark a ReaderModule
produces a float32_6 stream at 1KHz which is then fed
through a chain of FilterModules. The output of the final filter
is decimated and stored. The total overhead is below 6% for
all hardware platforms.

V. NON-INTRUSIVE LOAD MONITORING CASE STUDY

Non-Intrusive Load Monitors (NILM’s) use high bandwidth
current and voltage sensors to identify individual electrical
loads from aggregate power waveforms [13]. NILM’s can im-
prove energy conservation, reduce maintenance costs, or detect
anomalous activity [14], [15]. Unfortunately, NILM’s have

Fig. 6. This shows the same benchmark as Fig. 5 adjusted to reflect the total
CPU capacity of the hardware platform. The BeagleBone is omitted because
it has a single core processor.

Fig. 7. CPU load versus pipeline depth. A single 1KHz float32_6 stream
is processed by a series of filter modules. This overhead can be reduced by
combining modules into composites as described in Section III-D.

seen limited adoption in part because their high bandwidth
data streams make them difficult to integrate with traditional
IoT infrastructure. Using the Joule Framework, NILM’s can
perform the high bandwidth data processing locally. This
allows them to operate as standalone devices or transmit lower
bandwidth processed data to centralized servers for analysis.

The Yard Patrol fleet is a group of training vessels stationed
at the US Naval Academy. These ships are designed for
training rather than combat so they do not have the sophisti-
cated sensor arrays that are standard on modern naval vessels.
Installing NILM’s on these ships improves their situational
awareness by monitoring critical electrical loads. With the
Joule Framework, the crew can receive real time feedback
while the ship is underway, and when the ship is in port the
data can be transferred to centralized servers for higher level
analysis and comparison against other ships in the fleet.

Figure 8 shows a NILM installed in the engine room of the
YP692. The NILM uses an array of electromagnetic sensors
located around the outside of the power cable to measure three
phase current and voltage. The sensors are sampled at 3kHz by
an Atmel SAM4S microcontroller and transmitted over USB
to a RaspberryPi 3 running the Joule Framework. Modules
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Fig. 8. Non-Intrusive Load Monitor installed on the YP692. Electromagnetic
sensors (a) are placed radially around the primary power line. An ARM
microcontroller (b) samples the sensors at 3KHz and transmits the data by
USB to a Joule Node (c) for analysis and storage. After calibration this system
can measure the three phase power consumption of the entire ship.

Fig. 9. Module configuration for the non-intrusive load monitor. The USB
connected sensor produces eight 16-bit samples at 3KHz. The power spectral
envelopes are decimated and stored locally. Total CPU load on a RaspberryPi
3 is less than 25%

then convert the raw sensor data into line frequency (60Hz)
spectral envelopes. This represents a significant reduction in
bandwidth. The spectral envelope data can then be processed
by machine learning algorithms to identify individual loads
(eg [16]–[18]).

Figure 9 shows the module architecture for computing
power spectral envelopes from sensor data. The USB Capture
module manages the sensor hardware and produces an eight
element stream of electromagnetic (EM) field measurements
at 3KHz. The Reconstruct module converts the field measure-
ments into voltages and currents. The Sinefit module calcu-
lates multiple power quality metrics including line frequency.
Finally, the Prep module uses the line frequency, current, and
voltage streams to compute power spectral envelopes. The
prep and sinefit algorithms are presented in [19]. The entire
signal processing operation (jouled and associated modules)
consumes only 23% of the RaspberryPi 3’s CPU resources.

Figure 10 shows the fundamental spectral envelope (real
power) as measured by the NILM during a typical week day.

Fig. 10. Three phase power consumption of the YP692 sampled by a non-
intrusive load monitor at 3KHz. The power interruptions indicate the ship is
departing and then returning from a cruise. The higher baseline power after
the cruise indicates the crew has left equipment running on the vessel.

Fig. 11. (Top) A NILM installed on a split phase residential power line
(Bottom) During a family vacation, power consumption is close to zero until
the outdoor temperature increases beyond the thermostat set point of 80
degrees .

The vessel goes underway at 07:45 and returns at 15:30.
This is indicated by the temporary loss of power that occurs
when the ship transitions between shore power and onboard
generators. At large timescales the power data appears noisy
but as indicated by the inset, the waveform is actually a series
of distinct transients caused by loads switching on and off. Of
particular note in this data set is the higher baseline power
level after the ship returns to port. This indicates the crew did
not properly turn off equipment before leaving the ship for the
day.

Joule NILM’s also make it possible to monitor power usage
in low-margin environments where traditional current and
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voltage sensors are cost prohibitive. In particular these NILM’s
are an excellent tool for monitoring residential energy usage.
Figure 11 shows results from a NILM installed on a single
family home. The plot shows the energy usage during a week
where the home was unoccupied.

The rise in energy usage from July 19-22 is caused by the
AC unit. This could indicate a malfunctioning appliance, a
broken window, or perhaps an unauthorized occupant. Adding
a weather module to Joule explains the anomaly. The right
axis is a temperature stream produced by a Reader Module
that retrieves hourly weather data from a web API. The
combination of temperature and power streams show that
the AC unit was indeed operating correctly. The thermostat
was set to 80◦F with the intention that it would not run
while the house was unoccupied. However, the weather was
warmer than expected which triggered the AC during peak
outdoor temperatures. The NILM runs on a RaspberryPi 2
which operates at 35% load. The total bill of material for the
installation is under $100 USD.

VI. FUTURE WORK

The network transport layer of Joule could be extended to
support multipath routing, using, for example, the techniques
presented in [20], [21]. This would improved the reliability
of distributed pipelines in intermittent mobile networks. In
addition to exploring new routing topologies we are also
developing user interface (UI) design tools for visualizing the
distributed datasets produced by Joule nodes.

VII. CONCLUSION

Joule is a modular framework for executing real time
signal processing on low cost single board computers. Using
Joule, high bandwidth sensor nodes can process data locally
making them resilient to network outages and facilitating their
integration with centralized IoT infrastructure. Using the client
API, modules can be implemented in just a few lines of Python
code. Modules are loosely coupled by data streams to form
complex signal processing pipelines. Data streams use a com-
mon API regardless of their underlying transport mechanism.
The flexibility provided by the Joule architecture introduces
very little overhead, less than 4% for common workloads on
the latest RaspberryPi SBC. Deployments on ships, homes,
and labs running high bandwidth power monitors has proven
Joule to be an efficient and reliable data processing framework.
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